A human-specific modifier of cortical connectivity and circuit function
Dennis, MY et al. The evolution and diversity of the population of segmental duplications specific to humans. Nat. School. Evol. 1, 0069 (2017).
Ponce de León, MS et al. The early primitive brain Homo. Science 372, 165-171 (2021).
Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neotenia during spinal maturation. Cell 149, 923-935 (2012).
Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356-369 (2016).
Schmidt, ERE, Kupferman, JV, Stackmann, M. & Polleux, F. The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate synaptic development dependent on SRGAP2A. Sci. representing 9, 18692 (2019).
Sudmant, PH et al. Diversity of human copy number variation and multicopy genes. Science 330, 641-646 (2010).
Fortna, A. et al. Duplication and loss of lineage-specific genes in the evolution of humans and great apes. PLoS Biol. 2, E207 (2004).
Sporny, M. et al. Structural history of human SRGAP2 proteins. Mol. Biol. Evol. 34, 1463-1478 (2017).
Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J. & Yuste, R. Differences between cortical zone and species in dendritic spine morphology. J. Neurocytol. 31, 337-346 (2002).
Elston, GN, Benavides-Piccione, R. & DeFelipe, J. The pyramidal cell in cognition: a comparative study in humans and monkeys. J. Neurosci. 21, RC163 (2001).
Reardon, TR et al. Rabies virus strain CVS-N2cδG improves retrograde synaptic transfer and neuronal viability. Neuron 89, 711-724 (2016).
Wickersham, IR, Finke, S., Conzelmann, KK & Callaway, EM Retrograde neural tracing with deletion mutant rabies virus. Nat. Methods 4, 47-49 (2007).
Allen Mouse Common Coordinate Frame. Technical White Paper (Allen Institute for Brain Science, 2015).
Minamisawa, G., Kwon, SE, Chevée, M., Brown, SP & O’Connor, DH A non-canonical feedback circuit for rapid interactions between somatosensory cortices. Cell Rep. 23, 2718â2731.e6 (2018).
Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260-292 (2016).
Genescu, I. & Garel, S. Being shallow: a developmental perspective on cortical layer 1 wiring. Court. Opinion. Neurobiol. 66, 125-134 (2021).
Dana, H. et al. Thy1-GCaMP6 transgenic mice for in vivo neuronal population imaging. PLoS A 9, e108697 (2014).
Goebbels, S. et al. Genetic targeting of the main neurons of the neocortex and the hippocampus of NEX-Create mouse. Genesis 44, 611-621 (2006).
Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862-885 (2012).
Petersen, CCH Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 20, 533-546 (2019).
Guic-Robles, E., Jenkins, WM & Bravo, H. Discrimination of vibrissal roughness is dependent on the cylindrical cortex. Behave yourself. Brain Res. 48, 145-152 (1992).
Manita, S. et al. A descending cortical circuit for precise sensory perception. Neuron 86, 1304-1316 (2015).
Park, J., Rodgers, C., Hong, YK, Dahan, J. & Bruno, R. The primary somatosensory cortex is essential for texture discrimination but not for object detection in mice. IBRO Rep. 6, S550 (2019).
Geiller, T. et al. Large-scale 3D two-photon imaging of the dynamics of molecularly identified CA1 interneurons in behaving mice. Neuron 108, 968-983.e9 (2020).
Rossi, LF, Harris, KD & Carandini, M. Spatial connectivity corresponds to direction selectivity in the visual cortex. Nature 588, 648-652 (2020).
Courchet, J. et al. Terminal axonal branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial uptake. Cell 153, 1510-1525 (2013).
Hand, R. & Polleux, F. Neurogenin2 regulates the initial axonal guidance of cortical pyramidal neurons projecting medially to the corpus callosum. Dev. neuronal 6, 30 (2011).
Paxinos, G. & Franklin, KBJ The mouse brain in stereotaxic coordinates (Academic, 2001).
Ma, Y. et al. Wide-field optical mapping of neuronal activity and cerebral hemodynamics: considerations and new approaches. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150360 (2016).
Pnevmatikakis, EA & Giovannucci, A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83-94 (2017).
Peters, AJ, Chen, SX & Komiyama, T. Emergence of a reproducible spatio-temporal activity during motor learning. Nature 510, 263-267 (2014).
Deneux, T. et al. Accurate peak estimation from noisy calcium signals for ultra-fast three-dimensional imaging of large neuronal populations in vivo. Nat. Common. 7, 12190 (2016).
Hansel, D. & van Vreeswijk, C. How noise contributes to the contrast invariance of orientation adjustment in the visual cortex of the cat. J. Neurosci. 22, 5118-5128 (2002).
Miller, KD & Troyer, TW Neural noise may explain the extensive power law nonlinearities in neural response functions. J. Neurophysiol. 87, 653-659 (2002).
Priebe, NJ & Ferster, D. Inhibition, peak threshold, and selectivity of stimuli in the primary visual cortex. Neuron 57, 482-497 (2008).
Rubin, DB, Van Hooser, SD & Miller, KD The stabilized supralinear lattice: a unifying circuit pattern underlying multi-input integration in the sensory cortex. Neuron 85, 402-417 (2015).
Hennequin, G., Ahmadian, Y., Rubin, DB, Lengyel, M. & Miller, KD Neuron 98, 846-860.e5 (2018).
Keller, AJ et al. A disinhibitor circuit for contextual modulation in the primary visual cortex. Neuron 108, 1181â1193.e8 (2020).
Comments are closed.