A human-specific modifier of cortical connectivity and circuit function

  • 1.

    Dennis, MY et al. The evolution and diversity of the population of segmental duplications specific to humans. Nat. School. Evol. 1, 0069 (2017).

    Google Scholar article

  • 2.

    Ponce de León, MS et al. The early primitive brain Homo. Science 372, 165-171 (2021).

    Google Scholar ADS Article

  • 3.

    Charrier, C. et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neotenia during spinal maturation. Cell 149, 923-935 (2012).

    Google Scholar CAS Article

  • 4.

    Fossati, M. et al. SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91, 356-369 (2016).

    Google Scholar CAS Article

  • 5.

    Schmidt, ERE, Kupferman, JV, Stackmann, M. & Polleux, F. The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate synaptic development dependent on SRGAP2A. Sci. representing 9, 18692 (2019).

    ADS CAS Google Scholar Article

  • 6.

    Sudmant, PH et al. Diversity of human copy number variation and multicopy genes. Science 330, 641-646 (2010).

    ADS CAS Google Scholar Article

  • 7.

    Fortna, A. et al. Duplication and loss of lineage-specific genes in the evolution of humans and great apes. PLoS Biol. 2, E207 (2004).

    Google Scholar article

  • 8.

    Sporny, M. et al. Structural history of human SRGAP2 proteins. Mol. Biol. Evol. 34, 1463-1478 (2017).

    Google Scholar CAS Article

  • 9.

    Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J. & Yuste, R. Differences between cortical zone and species in dendritic spine morphology. J. Neurocytol. 31, 337-346 (2002).

    Google Scholar article

  • ten.

    Elston, GN, Benavides-Piccione, R. & DeFelipe, J. The pyramidal cell in cognition: a comparative study in humans and monkeys. J. Neurosci. 21, RC163 (2001).

    Google Scholar CAS Article

  • 11.

    Reardon, TR et al. Rabies virus strain CVS-N2cδG improves retrograde synaptic transfer and neuronal viability. Neuron 89, 711-724 (2016).

    Google Scholar CAS Article

  • 12.

    Wickersham, IR, Finke, S., Conzelmann, KK & Callaway, EM Retrograde neural tracing with deletion mutant rabies virus. Nat. Methods 4, 47-49 (2007).

    Google Scholar CAS Article

  • 13.

    Allen Mouse Common Coordinate Frame. Technical White Paper (Allen Institute for Brain Science, 2015).

  • 14.

    Minamisawa, G., Kwon, SE, Chevée, M., Brown, SP & O’Connor, DH A non-canonical feedback circuit for rapid interactions between somatosensory cortices. Cell Rep. 23, 2718–2731.e6 (2018).

    Google Scholar CAS Article

  • 15.

    Tremblay, R., Lee, S. & Rudy, B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91, 260-292 (2016).

    Google Scholar CAS Article

  • 16.

    Genescu, I. & Garel, S. Being shallow: a developmental perspective on cortical layer 1 wiring. Court. Opinion. Neurobiol. 66, 125-134 (2021).

    Google Scholar CAS Article

  • 17.

    Dana, H. et al. Thy1-GCaMP6 transgenic mice for in vivo neuronal population imaging. PLoS A 9, e108697 (2014).

    Google Scholar ADS Article

  • 18.

    Goebbels, S. et al. Genetic targeting of the main neurons of the neocortex and the hippocampus of NEX-Create mouse. Genesis 44, 611-621 (2006).

    Google Scholar CAS Article

  • 19.

    Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862-885 (2012).

    Google Scholar CAS Article

  • 20.

    Petersen, CCH Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci. 20, 533-546 (2019).

    Google Scholar CAS Article

  • 21.

    Guic-Robles, E., Jenkins, WM & Bravo, H. Discrimination of vibrissal roughness is dependent on the cylindrical cortex. Behave yourself. Brain Res. 48, 145-152 (1992).

    Google Scholar CAS Article

  • 22.

    Manita, S. et al. A descending cortical circuit for precise sensory perception. Neuron 86, 1304-1316 (2015).

    Google Scholar CAS Article

  • 23.

    Park, J., Rodgers, C., Hong, YK, Dahan, J. & Bruno, R. The primary somatosensory cortex is essential for texture discrimination but not for object detection in mice. IBRO Rep. 6, S550 (2019).

    Google Scholar article

  • 24.

    Geiller, T. et al. Large-scale 3D two-photon imaging of the dynamics of molecularly identified CA1 interneurons in behaving mice. Neuron 108, 968-983.e9 (2020).

    Google Scholar CAS Article

  • 25.

    Rossi, LF, Harris, KD & Carandini, M. Spatial connectivity corresponds to direction selectivity in the visual cortex. Nature 588, 648-652 (2020).

    ADS CAS Google Scholar Article

  • 26.

    Courchet, J. et al. Terminal axonal branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial uptake. Cell 153, 1510-1525 (2013).

    Google Scholar CAS Article

  • 27.

    Hand, R. & Polleux, F. Neurogenin2 regulates the initial axonal guidance of cortical pyramidal neurons projecting medially to the corpus callosum. Dev. neuronal 6, 30 (2011).

    Google Scholar CAS Article

  • 28.

    Paxinos, G. & Franklin, KBJ The mouse brain in stereotaxic coordinates (Academic, 2001).

  • 29.

    Ma, Y. et al. Wide-field optical mapping of neuronal activity and cerebral hemodynamics: considerations and new approaches. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150360 (2016).

    Google Scholar article

  • 30.

    Pnevmatikakis, EA & Giovannucci, A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83-94 (2017).

    Google Scholar CAS Article

  • 31.

    Peters, AJ, Chen, SX & Komiyama, T. Emergence of a reproducible spatio-temporal activity during motor learning. Nature 510, 263-267 (2014).

    ADS CAS Google Scholar Article

  • 32.

    Deneux, T. et al. Accurate peak estimation from noisy calcium signals for ultra-fast three-dimensional imaging of large neuronal populations in vivo. Nat. Common. 7, 12190 (2016).

    ADS CAS Google Scholar Article

  • 33.

    Hansel, D. & van Vreeswijk, C. How noise contributes to the contrast invariance of orientation adjustment in the visual cortex of the cat. J. Neurosci. 22, 5118-5128 (2002).

    Google Scholar CAS Article

  • 34.

    Miller, KD & Troyer, TW Neural noise may explain the extensive power law nonlinearities in neural response functions. J. Neurophysiol. 87, 653-659 (2002).

    Google Scholar article

  • 35.

    Priebe, NJ & Ferster, D. Inhibition, peak threshold, and selectivity of stimuli in the primary visual cortex. Neuron 57, 482-497 (2008).

    Google Scholar CAS Article

  • 36.

    Rubin, DB, Van Hooser, SD & Miller, KD The stabilized supralinear lattice: a unifying circuit pattern underlying multi-input integration in the sensory cortex. Neuron 85, 402-417 (2015).

    Google Scholar CAS Article

  • 37.

    Hennequin, G., Ahmadian, Y., Rubin, DB, Lengyel, M. & Miller, KD Neuron 98, 846-860.e5 (2018).

    Google Scholar CAS Article

  • 38.

    Keller, AJ et al. A disinhibitor circuit for contextual modulation in the primary visual cortex. Neuron 108, 1181–1193.e8 (2020).

    Google Scholar CAS Article


  • Source link

    Comments are closed.