Convergent somatic mutations in metabolism genes in chronic liver disease

  • 1.

    The Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341 (2017).

    PubMed Central
    Article
    CAS
    PubMed

    Google Scholar

  • 2.

    Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 3.

    Totoki, Y. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46, 1267–1273 (2014).

    CAS
    PubMed
    Article

    Google Scholar

  • 4.

    Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    CAS
    PubMed
    Article

    Google Scholar

  • 5.

    Letouzé, E. et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8, 1315 (2017).

    PubMed
    PubMed Central
    Article
    ADS
    CAS

    Google Scholar

  • 6.

    Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 7.

    Fujimoto, A. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 48, 500–509 (2016).

    CAS
    PubMed
    Article

    Google Scholar

  • 8.

    Pinyol, R. et al. Molecular characterization of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 75, 865–878 (2021).

    PubMed
    Article

    Google Scholar

  • 9.

    Nault, J. C. et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 60, 1983–1992 (2014).

    CAS
    PubMed
    Article

    Google Scholar

  • 10.

    Torrecilla, S. et al. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. J. Hepatol. 67, 1222–1231 (2017).

    PubMed
    Article

    Google Scholar

  • 11.

    Zhu, M. et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell 177, 608–621 (2019).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 12.

    Kim, S. K. et al. Comprehensive analysis of genetic aberrations linked to tumorigenesis in regenerative nodules of liver cirrhosis. J. Gastroenterol. 54, 628–640 (2019).

    CAS
    PubMed
    Article

    Google Scholar

  • 13.

    Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019).

    CAS
    PubMed
    PubMed Central
    Article
    ADS

    Google Scholar

  • 14.

    Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    CAS
    PubMed
    PubMed Central
    Article
    ADS

    Google Scholar

  • 15.

    Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 16.

    Brazhnik, K. et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci. Adv. 6, eaax2659 (2020).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 17.

    Barneda, D. et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife 4, e07485 (2015).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 18.

    Sun, Z. et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat. Commun. 4, 1594 (2013).

    PubMed
    Article
    ADS
    CAS

    Google Scholar

  • 19.

    Li, J. Z. et al. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56, 2523–2532 (2007).

    CAS
    PubMed
    Article

    Google Scholar

  • 20.

    Hammond, L. E. et al. Mitochondrial glycerol-3-phosphate acyltransferase-1 is essential in liver for the metabolism of excess acyl-CoAs. J. Biol. Chem. 280, 25629–25636 (2005).

    CAS
    PubMed
    Article

    Google Scholar

  • 21.

    Wendel, A. A., Cooper, D. E., Ilkayeva, O. R., Muoio, D. M. & Coleman, R. A. Glycerol-3-phosphate acyltransferase (GPAT)−1, but not GPAT4, incorporates newly synthesized fatty acids into triacylglycerol and diminishes fatty acid oxidation. J. Biol. Chem. 288, 27299–27306 (2013).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 22.

    Jeon, S. & Carr, R. Alcohol effects on hepatic lipid metabolism. J. Lipid Res. 61, 470–479 (2020).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 23.

    Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 24.

    Clugston, R. D. et al. Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol: a targeted lipidomic and gene expression study. J. Lipid Res. 52, 2021–2031 (2011).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 25.

    Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007).

    CAS
    PubMed
    Article

    Google Scholar

  • 26.

    Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    CAS
    PubMed
    Article

    Google Scholar

  • 27.

    Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020).

    CAS
    PubMed
    PubMed Central
    Article
    ADS

    Google Scholar

  • 28.

    Yaffe, M. B. et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    CAS
    PubMed
    Article

    Google Scholar

  • 29.

    Saline, M. et al. AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. J. Biol. Chem. 294, 13106–13116 (2019).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 30.

    Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed
    Article

    Google Scholar

  • 31.

    Ishak, K. et al. Histological grading and staging of chronic hepatitis. J. Hepatol. 22, 696–699 (1995).

    CAS
    PubMed
    Article

    Google Scholar

  • 32.

    Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protoc. 16, 841–871 (2021).

    CAS
    PubMed
    Article

    Google Scholar

  • 33.

    Jones, D. et al. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinformatics 56, 15.10.1–15.10.18 (2016).

    Article

    Google Scholar

  • 34.

    Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    CAS
    PubMed
    PubMed Central
    Article
    ADS

    Google Scholar

  • 35.

    Papastamoulis, P. label.switching: an R package for dealing with the label switching problem in MCMC outputs. J. Stat. Softw. 69, Code Snippet 1 (2015).


    Google Scholar

  • 36.

    Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 37.

    Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 38.

    Raine, K. M. et al. cgpPindel: identifying somatically acquired insertion and deletion events from paired end sequencing. Curr. Protoc. Bioinformatics 52, 15.7.1–15.7.12 (2015).

    Article

    Google Scholar

  • 39.

    Campbell, P. J. et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet. 40, 722–729 (2008).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 40.

    Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    MathSciNet
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 41.

    Sohlenius-Sternbeck, A. K. Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements. Toxicol. Vitr. 20, 1582–1586 (2006).

    CAS
    Article

    Google Scholar

  • 42.

    Lipscomb, J. C., Fisher, J. W., Confer, P. D. & Byczkowski, J. Z. In vitro to in vivo extrapolation for trichloroethylene metabolism in humans. Toxicol. Appl. Pharmacol. 152, 376–387 (1998).

    CAS
    PubMed
    Article

    Google Scholar

  • 43.

    Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019).

    PubMed
    PubMed Central
    Article

    Google Scholar

  • 44.

    Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    CAS
    PubMed
    PubMed Central
    Article
    ADS

    Google Scholar

  • 45.

    Drost, H.-G. Philentropy: information theory and distance quantification with R. J. Open Source Softw. 3, 765 (2018).

    Article
    ADS

    Google Scholar

  • 46.

    Qiao, W. et al. PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput. Biol. 8, (2012).

  • 47.

    Farmery, J. H. R. et al. Telomerecat: a ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci. Rep. 8, 1300 (2018).

    PubMed
    PubMed Central
    Article
    ADS
    CAS

    Google Scholar

  • 48.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, v033i02 (2010).

    Article

    Google Scholar

  • 49.

    Hoare, M. et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18, 979–992 (2016).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 50.

    Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • 51.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).

    PubMed
    PubMed Central
    Article
    CAS

    Google Scholar


  • Source link

    Comments are closed.